94 research outputs found

    Ontology-Based Queries over Cancer Data

    Get PDF
    The ever-increasing amount of data in biomedical research, and in cancer research in particular, needs to be managed to support efficient data access, exchange and integration. Existing software infrastructures, such as caGrid, support access to distributed information annotated with a domain ontology. However, caGrid's current querying functionality depends on the structure of individual data resources without exploiting the semantic annotations. In this paper, we present the design and development of an ontology-based querying functionality that consists of: the generation of OWL2 ontologies from the underlying data resources’ metadata and a query rewriting and translation process based on reasoning, which converts a query at the domain ontology level into queries at the software infrastructure level. We present a detailed analysis of our approach as well as an extensive performance evaluation. While the implementation and evaluation was performed for the caGrid infrastructure, the approach could be applicable to other model and metadata-driven environments for data sharing

    Semantic concept schema of the linear mixed model of experimental observations

    Get PDF
    In the information age, smart data modelling and data management can be carried out to address the wealth of data produced in scientific experiments. In this paper, we propose a semantic model for the statistical analysis of datasets by linear mixed models. We tie together disparate statistical concepts in an interdisciplinary context through the application of ontologies, in particular the Statistics Ontology (STATO), to produce FAIR data summaries. We hope to improve the general understanding of statistical modelling and thus contribute to a better description of the statistical conclusions from data analysis, allowing their efficient exploration and automated processing.</p

    Software Citation Implementation Challenges

    Get PDF
    The main output of the FORCE11 Software Citation working group (https://www.force11.org/group/software-citation-working-group) was a paper on software citation principles (https://doi.org/10.7717/peerj-cs.86) published in September 2016. This paper laid out a set of six high-level principles for software citation (importance, credit and attribution, unique identification, persistence, accessibility, and specificity) and discussed how they could be used to implement software citation in the scholarly community. In a series of talks and other activities, we have promoted software citation using these increasingly accepted principles. At the time the initial paper was published, we also provided guidance and examples on how to make software citable, though we now realize there are unresolved problems with that guidance. The purpose of this document is to provide an explanation of current issues impacting scholarly attribution of research software, organize updated implementation guidance, and identify where best practices and solutions are still needed

    Community standards for open cell migration data

    Get PDF
    Cell migration research has become a high-content field. However, the quantitative information encapsulated in these complex and high-dimensional datasets is not fully exploited owing to the diversity of experimental protocols and non-standardized output formats. In addition, typically the datasets are not open for reuse. Making the data open and Findable, Accessible, Interoperable, and Reusable (FAIR) will enable meta-analysis, data integration, and data mining. Standardized data formats and controlled vocabularies are essential for building a suitable infrastructure for that purpose but are not available in the cell migration domain. We here present standardization efforts by the Cell Migration Standardisation Organisation (CMSO), an open community-driven organization to facilitate the development of standards for cell migration data. This work will foster the development of improved algorithms and tools and enable secondary analysis of public datasets, ultimately unlocking new knowledge of the complex biological process of cell migration

    Data standards can boost metabolomics research, and if there is a will, there is a way.

    Get PDF
    Thousands of articles using metabolomics approaches are published every year. With the increasing amounts of data being produced, mere description of investigations as text in manuscripts is not sufficient to enable re-use anymore: the underlying data needs to be published together with the findings in the literature to maximise the benefit from public and private expenditure and to take advantage of an enormous opportunity to improve scientific reproducibility in metabolomics and cognate disciplines. Reporting recommendations in metabolomics started to emerge about a decade ago and were mostly concerned with inventories of the information that had to be reported in the literature for consistency. In recent years, metabolomics data standards have developed extensively, to include the primary research data, derived results and the experimental description and importantly the metadata in a machine-readable way. This includes vendor independent data standards such as mzML for mass spectrometry and nmrML for NMR raw data that have both enabled the development of advanced data processing algorithms by the scientific community. Standards such as ISA-Tab cover essential metadata, including the experimental design, the applied protocols, association between samples, data files and the experimental factors for further statistical analysis. Altogether, they pave the way for both reproducible research and data reuse, including meta-analyses. Further incentives to prepare standards compliant data sets include new opportunities to publish data sets, but also require a little "arm twisting" in the author guidelines of scientific journals to submit the data sets to public repositories such as the NIH Metabolomics Workbench or MetaboLights at EMBL-EBI. In the present article, we look at standards for data sharing, investigate their impact in metabolomics and give suggestions to improve their adoption

    EBI metagenomics - a new resource for the analysis and archiving of metagenomic data

    Get PDF
    Metagenomics is a relatively recently established but rapidly expanding field that uses high-throughput next-generation sequencing technologies to characterize the microbial communities inhabiting different ecosystems (including oceans, lakes, soil, tundra, plants and body sites). Metagenomics brings with it a number of challenges, including the management, analysis, storage and sharing of data. In response to these challenges, we have developed a new metagenomics resource (http://www.ebi.ac.uk/metagenomics/) that allows users to easily submit raw nucleotide reads for functional and taxonomic analysis by a state-of-the-art pipeline, and have them automatically stored (together with descriptive, standards-compliant metadata) in the European Nucleotide Archive
    • 

    corecore